Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-Hydroxy-5-nitrobenzaldehyde

Hasan Tanak, ${ }^{\text {a }}$ Mustafa Macit, ${ }^{\text {b }}$ Metin Yavuz ${ }^{\text {a }}$ and Samil Ișık ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Physics, Faculty of Arts \& Science, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, and ${ }^{\text {b }}$ Department of Chemistry, Faculty of Arts \& Science, Ondokuz Mayıs University, 55139 Samsun, Turkey
Correspondence e-mail: htanak@omu.edu.tr

Received 3 November 2009; accepted 5 November 2009

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.050 ; w R$ factor $=0.119 ;$ data-to-parameter ratio $=12.5$.

The title compound, $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{4}$, is essentially planar, with a maximum deviation from the mean plane of 0.0116 (11) \AA for the hydroxy O atom. The molecular and crystal structure are stabilized by intra- and intermolecular interactions. An intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond generates a sixmembered ring, producing an $S(6)$ ring motif. The $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions result in the formation of $C(5)$ chains and $R_{2}^{2}(8)$ rings forming an approximately planar network parallel to $(10 \overline{1})$. These planes are interconnected through $\pi-\pi$ interactions [centroid-centroid distance 3.582 (2) Å].

Related literature

Nitroaromatics are widely used as intermediates in explosives, dyestuffs, pesticides and organic synthesis, see: Yan et al. (2006). They occur in industrial wastes and as direct pollutants in the environment and are relatively soluble in water and detectable in rivers, ponds and soil, see: Yan et al. (2006); Soojhawon et al. (2005). Aromatic compounds with multiple nitro substituents are known to be resistant to electrophilic attack by oxygenases, see: Halas et al. (1983). For comparison bond lengths and angles in related structures, see: Rizal et al. (2008); Garden et al. (2004). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data
$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{4}$
$V=710.3(3) \AA^{3}$
$M_{r}=167.12$
Monoclinic, $P 2_{1} / n$
$Z=4$
Mo $K \alpha$ radiation
$a=7.2580$ (17) A
$\mu=0.13 \mathrm{~mm}^{-1}$
$b=8.3960(13)$) \AA
$T=296 \mathrm{~K}$
$c=11.704$ (3) \AA
$0.54 \times 0.28 \times 0.15 \mathrm{~mm}$
$\beta=95.165(18)^{\circ}$

4345 measured reflections 1396 independent reflections 944 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.062$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.119 \quad$ independent and constrained
$S=1.06$
refinement
1396 reflections
112 parameters
$\Delta \rho_{\max }=0.16 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\text {i }}$	0.93	2.50	$3.427(3)$	175
$\mathrm{C}^{\mathrm{i}}-\mathrm{H} 6 \cdots \mathrm{O}^{\text {ii }}$	0.93	2.53	$3.433(3)$	163
$\mathrm{C}^{\mathrm{H}}-\mathrm{H} 7 \cdots \mathrm{O}^{\text {iii }}$	0.93	2.50	$3.176(3)$	130
$\mathrm{O}^{2}-\mathrm{H} 3 A \cdots \mathrm{O} 4$	$0.93(3)$	$1.73(3)$	$2.613(3)$	$157(3)$

Symmetry codes: (i) $x, y-1, z$; (ii) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$; (iii) $x, y+1, z$.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

This study was supported financially by the Research Center of Ondokuz Mayıs University (Project No. F-476). The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Fund).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2510).

organic compounds

References

Bernstein, J., Davies, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Garden, S. J., da Cunha, F. R., Glidewell, C., Low, J. N., Skakle, J. M. S. \& Wardell, J. L. (2004). Acta Cryst. C60, o12-o14.
Halas, L. E. \& Alexanderm, M. (1983). Appl. Environ. Microbiol. 45, 12341241.

Rizal, M. R., Azizul, I. \& Ng, S. W. (2008). Acta Cryst. E64, o915.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Soojhawon, I., Lokhande, P. D., Kodam, K. M. \& Gawai, K. R. (2005). Enzym. Microb. Technol. 37, 527-533.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Stoe \& Cie (2002). X-AREA and X-RED32. Stoe \& Cie, Darmstadt, Germany. Yan, X. F., Xiao, H. M., Gong, X. D. \& Ju, X. H. (2006). J. Mol. Struct. THEOCHEM, 764, 141-148.

supplementary materials

Acta Cryst. (2009). E65, o3056-03057 [doi:10.1107/S1600536809046807]

2-Hydroxy-5-nitrobenzaldehyde

H. Tanak, M. Macit, M. Yavuz and S. Isik

Comment

Nitroaromatics are widely used either as materials or as intermediates in explosives, dyestuffs, pesticides and organic synthesis (Yan et al., 2006). Nitroaromatics occur as industrial wastes and direct pollutants in the environment, and are relatively soluble in water and detectable in rivers, ponds and soil (Yan et al., 2006; Soojhawon et al., 2005). Morover, aromatic compounds with multiple nitro substituents are known to be resistant to electrophilic attack by oxygenases (Halas et al., 1983).

In the title compound (I, Fig. 1), the molecule is essentially planar with a maximum deviation from the mean plane of 0.0116 (11) \AA for atom O3. The bond lengths and angles in (I) have normal values, and are comparable with those in the related structures (Rizal et al., 2008; Garden et al., 2004). The dihedral angle between the aromatic ring and the nitro group is $3.83(3)^{\circ}$.

An intramolecular O3-H33 $\cdots \mathrm{O} 4$ interaction (Table 1, and Fig. 1) generates an $\mathrm{S}(6)$ ring motif (Bernstein et al., 1995). In the crystal structure, the molecules are linked by intermolecular $\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 4, \mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 3$ and $\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 7$ interactions into a three-dimensional framework. The C-H $\cdots \mathrm{O}$ interactions result in the formation of $\mathrm{C}(5)$ chain but also $\mathrm{R}_{2}{ }^{2}(8)$ ring forming an approximately planar network parallel to the ($10-1$) plane (Fig. 2). These planes are interconnected through $\pi-\pi$ interaction which occurs between Cg 1 (the centroid of the C1-C6 ring) and its symmetry equivalent at ($-\mathrm{x},-\mathrm{y},-\mathrm{z}$), with a centroid-to-centroid distance of 3.582 (2) \AA, a plane-to-plane separation of 3.367 (1) \AA and a slippage of $1.22 \AA$.

Experimental

The commercially available compound (Acros Organics) was recrystallized from ethanol.

Refinement

C-bound H atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$. The position of the H 3 A atom was obtained from a difference map of the electron density in the unit-cell and its coordinates were refined freely with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Figures

Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and 50% probability diplacement ellipsoids. H atoms are represented as small spheres of arbitrary radii.

supplementary materials

Fig. 2. Partial packing view showing the formation of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds represented as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry codes: (i) $x, y-1, z$; (ii) $x+1 / 2,-y+1 / 2, z+1 / 2$; (iii) $x, y+1, z]$

2-Hydroxy-5-nitrobenzaldehyde

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{4}$

$M_{r}=167.12$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=7.2580$ (17) \AA
$b=8.3960(13) \AA$
$c=11.704(3) \AA$
$\beta=95.165(18)^{\circ}$
$V=710.3(3) \AA^{3}$
$Z=4$
$F_{000}=344$
$D_{\mathrm{x}}=1.563 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 8368 reflections
$\theta=1.8-27.3^{\circ}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Prism., red
$0.54 \times 0.28 \times 0.15 \mathrm{~mm}$

Data collection

Stoe IPDS II
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
Detector resolution: 6.67 pixels mm^{-1}
$T=296 \mathrm{~K}$
rotation method scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.979, T_{\text {max }}=0.992$
4345 measured reflections

1396 independent reflections
944 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.062$
$\theta_{\text {max }}=26.0^{\circ}$
$\theta_{\text {min }}=3.0^{\circ}$
$h=-8 \rightarrow 8$
$k=-10 \rightarrow 10$
$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$	H atoms treated by a mixture of independent and constrained refinement
$w R\left(F^{2}\right)=0.119$	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.05 P)^{2}+0.0581 P\right]$
$S=1.06$	where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
1396 reflections	$(\Delta / \sigma)_{\max }<0.001$
112 parameters	$\Delta \rho_{\max }=0.16 \mathrm{e} \AA^{-3}$
	$\Delta \rho_{\min }=-0.15 \mathrm{e} \AA^{-3}$

Primary atom site location: structure-invariant direct methods

Special details

Experimental. 168 frames, detector distance $=120 \mathrm{~mm}$
Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
O1	$0.4340(3)$	$-0.1006(2)$	$0.25586(14)$	$0.0788(6)$
O2	$0.3658(3)$	$-0.3022(2)$	$0.15003(16)$	$0.0819(6)$
O3	$0.1019(3)$	$0.2346(2)$	$-0.19209(14)$	$0.0702(6)$
H3A	$0.130(4)$	$0.336(4)$	$-0.162(3)$	0.105^{*}
O4	$0.2251(3)$	$0.4736(2)$	$-0.06415(16)$	$0.0895(7)$
N1	$0.3709(3)$	$-0.1591(2)$	$0.16564(16)$	$0.0524(5)$
C1	$0.3019(3)$	$-0.0545(2)$	$0.07198(17)$	$0.0425(5)$
C2	$0.2232(3)$	$-0.1209(2)$	$-0.03011(17)$	$0.0459(5)$
H2	0.2154	-0.2309	-0.0385	0.055^{*}
C3	$0.1574(3)$	$-0.0228(3)$	$-0.11799(18)$	$0.0494(5)$
H3	0.1037	-0.0659	-0.1863	0.059^{*}
C4	$0.1711(3)$	$0.1417(2)$	$-0.10464(18)$	$0.0471(5)$
C5	$0.2551(3)$	$0.2073(2)$	$-0.00295(17)$	$0.0437(5)$
C6	$0.3190(3)$	$0.1067(2)$	$0.08585(17)$	$0.0431(5)$
H6	0.3730	0.1485	0.1544	0.052^{*}
C7	$0.2771(3)$	$0.3784(3)$	$0.0104(2)$	$0.0631(7)$
H7	0.3338	0.4172	0.0792	0.076^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.1123(15)$	$0.0673(12)$	$0.0522(10)$	$-0.0024(11)$	$-0.0171(10)$	$0.0069(9)$
O2	$0.1202(16)$	$0.0391(10)$	$0.0829(13)$	$0.0026(9)$	$-0.0101(11)$	$0.0101(8)$
O3	$0.0914(13)$	$0.0556(11)$	$0.0590(11)$	$0.0048(9)$	$-0.0195(9)$	$0.0061(8)$
O4	$0.1338(17)$	$0.0423(10)$	$0.0871(14)$	$0.0022(11)$	$-0.0199(12)$	$0.0094(9)$
N1	$0.0593(11)$	$0.0433(12)$	$0.0547(11)$	$-0.0005(9)$	$0.0047(9)$	$0.0071(9)$
C1	$0.0418(11)$	$0.0382(12)$	$0.0475(12)$	$-0.0002(9)$	$0.0041(9)$	$0.0023(9)$
C2	$0.0486(12)$	$0.0355(10)$	$0.0535(12)$	$-0.0007(9)$	$0.0046(9)$	$-0.0025(9)$
C3	$0.0526(12)$	$0.0492(13)$	$0.0453(12)$	$-0.0032(10)$	$-0.0013(9)$	$-0.0086(10)$

C4	$0.0463(11)$	$0.0458(13)$	$0.0480(12)$	$0.0029(9)$	$-0.0018(9)$	$0.0028(10)$
C5	$0.0468(11)$	$0.0366(11)$	$0.0470(12)$	$-0.0014(9)$	$0.0007(9)$	$-0.0008(9)$
C6	$0.0457(11)$	$0.0418(12)$	$0.0413(11)$	$-0.0031(9)$	$0.0009(9)$	$-0.0049(9)$
C7	$0.0805(17)$	$0.0424(13)$	$0.0643(15)$	$-0.0020(12)$	$-0.0045(12)$	$-0.0008(12)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{O} 1-\mathrm{N} 1$	$1.216(2)$
$\mathrm{O} 2-\mathrm{N} 1$	$1.215(2)$
$\mathrm{O} 3-\mathrm{C} 4$	$1.348(2)$
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A}$	$0.93(3)$
$\mathrm{O} 4-\mathrm{C} 7$	$1.218(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.458(3)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.367(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.394(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.370(3)$
$\mathrm{C} 4-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A}$	$100.5(19)$
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{O} 1$	$122.27(19)$
$\mathrm{O} 2-\mathrm{N} 1-\mathrm{C} 1$	$118.59(19)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1$	$119.13(18)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$121.56(19)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1$	$119.05(18)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$119.38(18)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$119.5(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.3
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$119.71(19)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.1
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.1

$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{C} 3-\mathrm{C} 4$	$1.392(3)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{C} 4-\mathrm{C} 5$	$1.401(3)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.386(3)$
$\mathrm{C} 5-\mathrm{C} 7$	$1.452(3)$
$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{C} 7-\mathrm{H} 7$	0.9300
$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 3$	$118.12(19)$
$\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 5$	$121.43(19)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$120.45(19)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$119.19(18)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 7$	$119.77(19)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 7$	$121.04(19)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$119.59(19)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$	120.2
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	120.2
$\mathrm{O} 4-\mathrm{C} 7-\mathrm{C} 5$	$123.3(2)$
$\mathrm{O} 4-\mathrm{C} 7-\mathrm{H} 7$	118.4
$\mathrm{C} 5-\mathrm{C} 7-\mathrm{H} 7$	118.4

Hydrogen-bond geometry ($\left.\AA,^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2 — \mathrm{H} 2 \cdots 4^{\mathrm{i}}$	0.93	2.50	$3.427(3)$	175
$\mathrm{C} 6-\mathrm{H} 6 \cdots 3^{\mathrm{ii}}$	0.93	2.53	$3.433(3)$	163
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.93	2.50	$3.176(3)$	130
$\mathrm{O} 3 — \mathrm{H} 3 \mathrm{~A} \cdots \mathrm{O} 4$	$0.93(3)$	$1.73(3)$	$2.613(3)$	$157(3)$

Symmetry codes: (i) $x, y-1, z$; (ii) $x+1 / 2,-y+1 / 2, z+1 / 2$; (iii) $x, y+1, z$.

supplementary materials

Fig. 1

supplementary materials

Fig. 2

